Monday, May 24, 2010

Study uncovers optimal ecology of bioinsecticide

ScienceDaily (May 20, 2010) — BBSRC-funded researchers at the University of Oxford and Royal Holloway University of London have discovered that the commonly used and naturally occurring bacterial insecticide Bt works best if applied to young plants and is enhanced by the presence of the insect pests.


The research is published in the open-access journal PLoS Pathogens.

Spraying Bt -- the bacterium Bacillus thuringiensis -- is a common method for controlling a variety of insect pests and is one of the main approaches to chemical-free pest control in agriculture. Optimising sustainable farming techniques can help meet the challenge of feeding 9 billion people by 2050 using fewer resources and with minimum impact on the environment.

Senior researcher Dr Mike Bonsall at the University of Oxford said: "Bt has been used commercially for about 40 years and is readily available to control pest moths and the like, but until now we've known very little about the natural abundance of the bacteria in the environment and what happens when we apply extra bacteria as a means of pest control. It's really important to understand what is happening so that we can, for example, know what factors might have an impact on the insects becoming resistant to Bt."

Bt is found naturally in soils and on plants and exists as many different varieties that each have a preference for infecting different organisms. Bt strains that are specific to certain insects rely on being able to infect those insects in order to reproduce. The researchers studied a strain called ST8, which infects the Diamondback Moth -- a pest that attacks cabbages, broccoli and related crops -- and they found that the population of bacteria (either existing or applied) establishes itself more readily when the insects are present.

The team set up several cabbage plots in the field to examine what was happening when there were extra insects and/or extra bacteria added to what was already present. Then they took samples of soil and leaves. For each sample they looked at the genetics of the bacteria to build a profile of which strains of Bt were present and in what numbers.

Lead researcher Dr Ben Raymond at Royal Holloway University of London said: "We found that our strain, ST8, is the most common in the environment already and it also seems to be best at getting onto the leaves where it can infect the moths. We think that the ST8 that exists naturally in the farm environment might well be colonising the plant as growing seedlings so it gets the earliest possible opportunity to infect the moths, which of course it needs to do to survive.

"This makes sense given that we also found that when there are extra insects in the environment the bacteria actually do much better and can be found in larger numbers. It also shows why spraying the plants, especially young ones, rather than the soil is the best way of using Bt to control insect pests."

The research team are also looking at factors that affect the chances of insects becoming resistant to Bt. In particular they are looking at the way the toxin that kills the insect and an antibiotic that Bt produces to get rid of competing strains of bacteria in the insect's gut both impact the evolution of resistance in the insect.

Professor Douglas Kell, BBSRC Chief Executive said: "Sustainable solutions to future food security will rely on a thorough understanding of how ecosystems operate. This is a good example where the interactions between different parts of such a system have a significant impact on how we can control pests using biological rather than chemical methods. It is also vital that our ongoing practices with Bt present minimal risk of insects becoming resistant and so work to understand the fundamental biology that happens within this system is extremely important."

Saturday, May 22, 2010

Agriculture is a Worship

Kelantanese Government is now trying to boost its agriculture sector as to become National Food Hub. The approach chosen by the state government is quite unique. Doing agriculture is not to gain profit as much as possible (as other people see it) but it is a part of worship to God. This principle is highlighted  by the state government, they come with their own moto "Agriculture is a Worship". This new concept of agriculture would give significant impact to the target group in many aspects.
Environment is created by God and human as khalifah in this world must manage it for the sake of live beings. Farmers would try at their best in the agricultural practices so as to worship God. They would feel responsible for providing people with safe food and preserving the environment at the same time. Pests as part of the God creatures which also worship God should not be eliminated completely from the field. They must be maintained below the threshold level. The damage by the pests under the threshold level considered as "sodaqoh" where the farmers would get reward from God for good deeds.
I see this new approach would have a bright future if it is implemented in the right way. For more information plesae go to http://www.bertanisatuibadah.net/
   

Research promises more healthful vegetable oil -- and tractor fuel to harvest it

ScienceDaily (May 21, 2010) — Genetic discoveries from a shrub called the burning bush, known for its brilliant red fall foliage, could fire new advances in biofuels and low-calorie food oils, according to Michigan State University scientists.
New low-cost DNA sequencing technology applied to seeds of the species Euonymus alatus -- a common ornamental planting -- was crucial to identifying the gene responsible for its manufacture of a novel, high-quality oil. But despite its name, the burning bush is not a suitable oil crop.
Yet inserted into the mustard weed -- well-known to researchers as Arabidopsis and a cousin to commercial oilseed canola -- the burning bush gene encodes an enzyme that produces a substantial yield of unusual compounds called acetyl glycerides, or acTAGs. Related vegetable oils are the basis of the world's oilseed industry for the food and biofuels markets, but the oil produced by the burning bush enzyme claims unique and valuable characteristics.
One is its lower viscosity, or thickness.
"The high viscosity of most plant oils prevents their direct use in diesel engines, so the oil must be converted to biodiesel," explained Timothy Durrett, an MSU plant biology research associate. "We demonstrated that acTAGs possess lower viscosity than regular plant oils. The lower viscosity acTAGs could therefore be useful as a direct-use biofuel for many diesel engines."
Improved low-temperature characteristics noted for the oil also could make it suitable for diesel fuel, he said. And acTAGs boast lower calorie content than other vegetable oils, Durrett added, "thus they could be used as a reduced-calorie food oil substitute."
With University Distinguished Professor of plant biology John Ohlrogge, visiting professor of plant biology Michael Pollard and other MSU researchers, Durrett published the findings in the May 18 issue of Proceedings of the National Academy of Sciences.
The burning bush is certainly not a rare species -- the team gathered its samples from plantings around MSU's campus. The researchers now are working to improve the modified mustard weed seeds' acTAGs yield and already report purity levels of up to 80 percent.
"It should now be possible to produce acetyl glycerides in transgenic oilseed crops or single cell production systems such as algae that are the focus of much current effort in biofuels research," said Pollard, who is keen to explore the technology's commercial potential. "With the basic genetics defined and thus one major technical risk greatly reduced, the way is open to produce and assess this novel oil in food and nonfood applications."
Funding for this early stage research came from the U.S. Department of Agriculture with support by the Great Lakes Bioenergy Research Center, a scientific consortium of which MSU is a major partner.